Line detection with adaptive random samples
نویسنده
چکیده
This paper examines the detection of parameterized shapes in multidimensional noisy grayscale images. A novel shape detection algorithm utilizing random sample theory is presented. Although the method can be generalized, line detection is detailed. Each line in the image corresponds to a point in the line parameter space. The method creates hypothesis lines by randomly selecting parameter space points and tests the surrounding regions for acceptable linear features. The information obtained from each randomly selected line is used to update the parameter distribution, which reduces the required number of random trials. The selected lines are re-estimated within a smaller search space with a more accurate algorithm like the Hough transform (HT). Faster results are obtained compared to HT, without losing performance as in other faster HT variants. The method is robust and suitable for binary or grayscale images. Results are given from both simulated and experimental subsurface seismic and ground penetrating radar (GPR) images when searching for features like pipes or tunnels.
منابع مشابه
Adaptive Line Enhancement Using a Parallel IIR Filter with A Step-By-step Algorithm
A step-by-step algorithm for enhancement of periodic signals that are highly corrupted by additive uncorrelated white gausian noise is proposed. In each adaptation step a new parallel second-order section is added to the previous filters. Every section has only one adjustable parameter, i.e., the center frequency of the self-tuning filter. The bandwidth and the convergence factor of each secti...
متن کاملPhishing website detection using weighted feature line embedding
The aim of phishing is tracing the users' s private information without their permission by designing a new website which mimics the trusted website. The specialists of information technology do not agree on a unique definition for the discriminative features that characterizes the phishing websites. Therefore, the number of reliable training samples in phishing detection problems is limited. M...
متن کاملCrop-row detection algorithm based on Random Hough Transformation
It is important to detect crop rows accurately for field navigation. In order to spray on line, a variable rate spray system should detect the crop center line accurately. Most existing detection algorithms are slow to detect crop rows because of the complicated calculation. The gradient-based Random Hough Transform algorithm could improve the calculation speed and reduce the computation effect...
متن کاملClutter adaptive multiframe detection/tracking of random signature targets
This paper develops the two-dimensional (2D) clutter adaptive, multiframe Bayes detector/tracker for targets with random signature. We model the background clutter and the target signature as samples of two independent, spatially correlated, 2D noncausal Gauss-Markov random elds (GMrfs). The target's motion is modeled by a 2D hidden Markov model (HMM). We study, through Monte Carlo simulations,...
متن کاملتخمین وفقی مرز کلاتر در کلاترهای ویبول با استفاده از پیش آشکارساز UMPI
In radar detection, the existence of the clutter edge in the reference samples considerably degrades the performance of the detector. Hence, clutter edge estimation not only improves the CFAR detectors, but also can be used for partitioning the various areas of the clutter in the clutter map. In this paper, we propose an adaptive algorithm for detecting the clutter edge between two Weibull clut...
متن کامل